
We wanted to build a drawing bot. We wanted it to be transportable to bring it to festivals.
Assembly and Disassembly should be easy. Other drawing bots we found are listed below.

Watercolorbot
AxiDraw

Youtube
EasyDraw
Alternative drawing bot with v guides

Most inspiration we drew from the AxiDraw, but we decided to use a capstan drive instead of a belt
for driving. We just learned about this type of drive in the lecture and were eager try it out. The
motion system would be an H-bot.
For the capstan drive, we took much inspiration from the UrumbotXY 2.0.

First, we met and thought about how to build the machine in general. We decided to use aluminum
extrusions and wheels as linear guides. We made some initial sketches to better understand, how
the machine whould look like and what parts we would need.

dr4wbck

Idea

https://watercolorbot.com/
https://shop.evilmadscientist.com/productsmenu/846
https://www.youtube.com/watch?v=s1gaCjqrVGI
https://shopmakerq.com/product/easydraw-v3-writing-and-drawing-machine-fully-assembled/
https://www.hnhcart.com/products/techno-tirupati-cnc-axidraw-drawing-machine-x-y-pen-plotter-for-a4-size
https://www.youtube.com/watch?v=s1gaCjqrVGI
https://en.wikipedia.org/wiki/Capstan_equation
https://gitlab.cba.mit.edu/quentinbolsee/urumbotxy-2.0

Here you can see the inital concept. The wheels for the linear guide as well as the v-wheels for
guiding the rope are placed on the middle carriage and the rope is fixated at the head.

We split the work into the following sub tasks.

1. Trying out RAMPS (a kit containing an Arduino for the firmware and drivers) and get it
working with Printrun.

2. Designing the parts for the tail
3. Designing the motor mounts.
4. Designing a head with a Pen holder and a mechanism to lift it.
5. Producing and testing the prototypes and the parts needed.

Our Instructor suggested the following workflow:

1. Rapidly designing and and assembling a dummy prototype, either using cardboard or
digitally, using Blender. The idea of this step is to have a rough sketch and to get an idea
of the mechanism, dimensions, etc.

2. Design every part (yes, every part) in a CAD software and assemble that exactly in the
way we would assemble it later in reality. Following his experience, mistakes are mostly
made with components that were not taken into account in the digital model previously.

3. Iteratively fabricating the machine.

Due to us having less to no experience in machine building, we did not make to follow step one
properly. Looking back, however, the sketch-making session at the beginning of the week helped
us a lot with understanding what we want to do.

Our machine would consist of both standard parts (e.g. the aluminum extrusions, screws and
bearings) and parts designed by us. The standard parts, we downloaded from various resources,
such as GrabCAD and OpenBuilds. Most of the parts were retrieved by looking up another machine
that uses extrusions and wheels for the guide and downloading the parts from there. For screws,
we used the fasteners workbench extension for FreeCAD.

The initial design we kept simple so we could produce them fast and test out the mechanism. We
built a flat motor bracket for connecting the motor to the extrusion: 10-motor-mount.jpg

We printed the capstan and pulley from the UrumbotXY 2.0 as well as a simple head. 06-idler.jpg
40-head.jpg

The idea of the carriage was to have a plate and mount four wheels at its bottom and four wheels
at its top to connect the horizontal and the vertical axis with each other. Additionally, we wanted to
mount four v-wheels to guide the capstan thread. A plate for mounting the wheels we already had

Mechanism & Parts
Design

https://reprap.org/wiki/RAMPS_1.4
https://github.com/kliment/Printrun
https://grabcad.com
https://builds.openbuilds.com/

as a metal part. It was very sturdy, so we wanted to use it. However, it did not suffice to mount
each of the wheels, so we designed a larger second plate to be mounted on top of the metal plate
for mounting the other wheels. 13-carriage.jpg
A problem was that the wheels guiding the second axis and those guiding the top axis were
mirrored in respect to each other, so the heads of the respective screws would have been very
near to each other. Our instructor advised against that. We redesigned the carriage according to
the feedback. It was at this time that we decided to use the eccentric screws to tighten the rope.
14-carriage-new.jpg

The tail was designed with one wheel. The wheel seen at the picture was substituted with a v-
wheel later on. 30-tail.jpg

Then we designed a new head with which we were able to fixate the capstan thread.
50-assembly.jpg

Apart from that we printed a cable chain we found at thingiverse to connect the head with the
board. In the end we noticed, that the chain was not sturdy enough and that we could not use it for
our machine. Due to time constraints we omitted it for this assignment. 90-cable.jpg

Next, we assembled everything... 05-gewinde.jpg
... cut threads, screwed everything down, assembled the capston drive rope... 10-assembly-rl.jpg
... and operated it manually:

We were very happy that it worked because we were unsure about it and considered switching to a
belt drive.

When we operated the mechanism, we needed to hold down the machine at its feet to prevent
falling over. This was the first we improved.

10-mistakes.jpg

First, just adding a little angle in the motor bracket as well as extending it to mount the motor in a
more stable way reduced the oscillations, but did not avoid them completely.

Therefore, we added sideway stabilization as well. Furthermore, a mount for the end stop was
added. 30-new-foot.jpg

The improved head and the initial design for the pen mount can be seen below. 10-head.jpg

Assembly & Manual Operation

Re-Design

https://www.thingiverse.com/thing:2920060

Besides the end stop at the foot, one also was added at the bottom of the head.

Also, a never-produced new cariage for mounting the cable chains to guide the cables from one of
the feet to the head was designed. 20-carriage.jpg

We now had a mechanism and motors driving it. The next step was to tell the motors what to do in
order to draw a picture. This involed setting up a driver for the motor (a circuit that translates step
signals into current flowing through the coils in the motor to make it move), a software that sends
step signals to the drivers based on given machine code (referred to as firmware), a GUI that
interfaces the user with the firmware, enable them to send machine code to the firmware and to
come up with a workflow to generate G-code from an .svg file.

Actuation & Automation

Setting up the Controller

To automate the machine, we used a RAMPS kit. It is a set consisting of an Arduino board supposed
to run the firmware, Pololu-style stepper motor drivers, as well as a shield for the Arduino board to
connect power supply and drivers. The drivers we used were of the type DRV8428. For assembling
everything, we followed the steps at the RepRap wiki.

The power supply we used had open contacts with above 200V.

We wanted to avoid touching them so a cover was designed using FreeCAD. Note the rounds where
two straight pieces meet. This is to avoid the cover breaking at the corner.

Every driver had a slot to put it at. Under the driver there were jumpers. They could be set to
configure microstepping. We set all jumpers to enable the setting with the smallest-possible steps.
The driver carrier had an adjustable resistor which was used to adjust the maximum current the
driver would provide to the motor.

We followed this tutorial by Pololu. First, everything but the motor was connected. The maximum

https://www.digikey.de/en/products/detail/texas-instruments/DRV8428PWPR/13563046
https://reprap.org/wiki/RAMPS_1.4
https://www.pololu.com/blog/484/video-setting-the-current-limit-on-pololu-stepper-motor-driver-carriers

current was found from the data sheet of the motor. In our case it was 2.5A (we used a wantai
stepper motor with the model number 42BYGHW811). Following the driver-specific information in
Pololu's tutorial, the maximum voltage to be measured between the potentiometer and GND was
1.25V. We set the voltage to 1.2V to be safe that we do not give too much current to the motor. We
repeated this procedure for two drivers in total since we had two stepper motors to drive.

Afterwards, we needed to connect the motors to the board. Our stepper motors had four wires
attached. The question to answer was how to arrange them so that the motor works correctly?
Each motor contained two coils. The two ends of each coil were led out of the motor. There were
two coils so there were four cables in total. To identify a coil pair, we measured the current
between each pair of wires and turned the motor. This induced a current in both coils which could
then be measured. The current induced was alternating current since the motor was turned
manually. We measured with the direct current setting. This did not matter that much, because we
only were interested if there is current flowing or not. We noticed a significant change in the
measured current when the motor was turned. The pairs identified were blue, red and black, green.

We soldered the cables so that the corresponding cables were next to each other. The next
question was: does the motor turn the right way around? The direction of the motor could be
changed without changing the firmware by just switching the cables. The following rules hold
where 1A 1B 2A 2B is the original order of the cables:

If you change the order of one of the cable pairs (1A 1B 2B 2A), the direction of the motor
changes.
If you change the order of both of the pairs (1B 1A 1B 1A), this is invariant to the direction
of the motor direction.
If you change both cable directions and you switch the pairs (2B 2A 1B 1A), this changes
the direction of the motor.

It is important to note that one always needs to turn off the power when messing with the
connections of the ramps board. Plugging the motor cables while there is still a power supply
connected could destroy the circuitry in the RAMPS kit. For the following video the hello world
sketch provided at the RAMPS wiki page was flashed.

As a firmware to flash onto the Arduino we used Marlin. We followed the installation instructions
and used PlatformIO. There were no difficulties with that. First, we flashed it without further
modifications. Later, we adjusted the file Configuration.h to configure the firmware. To send machine
code from a desktop PC/laptop to the firmware via USB, we used Printrun with Pronterface as a GUI.
2025-04-15__11-31-33.jpg Note that the baud rate needs to be the same in the configuration file of
the firmware as well as in Printrun.

After adjusting this, one needed to connect to the Arduino board by hitting the corresponding
button. 2025-04-15__11-32-50.jpg

We then connected the end stops to the ramps shield as described in the RAMPS wiki. With Marlin,
the G-code M119 yielded the state of the end stops which was helpful for checking if their
activation is recognized.

To set up servo motors with RAMPS and Marlin one connects the servo motor as depcted in the
RAMPS wiki. In Marlin's configuration, the following line needs to be uncommented.

Then, the servo could be controlled using the G-codes M280, M281, and M282.

Setting up Firmware & GUI

#define BAUDRATE 250000

End Stops

Servo Motors

#define NUM_SERVOS 1 // Note: Servo index starts with 0 for M280-M282 commands

https://marlinfw.org/
https://marlinfw.org/docs/gcode/M280.html

Our motion system was not as simple as "one motor turns, the other not -> only one axis moves",
because instead of a cartesian motion system we had an H-bot. When both motors were turning in
the opposite direction, the vertical axis was moving. When both motors were turning in the same
direction, the horizontal axis was moving. When only one motor was moving and the other one not,
both the vertical and the horizontal axis were moving to the same extent. For the mechanism to be
automated correctly, we needed to configure the firmware accordingly. The configuration for the
motor behavior was the same as with the CoreXY motion system, so we configured the firmware to
drive the motors according to CoreXY's rules.

We put a tape onto our capstan thread and marked the extrusion with white tape where the right
end of the tape attached to the thread was. We then moved 10mm in one axis, marked the
extrusion again and measured the distance. 80-identify-steps-per-mm.jpg The distance traveled
was 78.4mm instead of 100mm. We stated a ratio equation: desired distance travelled / actual distance
travelled = desired steps / actual steps . The unknown variable was desired steps . Resolving the
equation yielded desired steps = desired distance travelled / real distance travelled * actual steps . The
actual steps were taken from the original configuration which were 80. Calculating the new
steps/mm yielded a value of 102 steps/mm. It is a good idea to repeat this procedure iteratively
several times to get a more precise value for the steps/mm. However, already at the second

Configuring Firmware: Motion System &
Steps/mm

// Enable one of the options below for CoreXY, CoreXZ, or CoreYZ kinematics,
// either in the usual order or reversed
#define COREXY
//#define CoreXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY

iteration, we got a new value of 102.4 steps/mm, so we did not change the steps/mm any further.
For more calculations regarding stepper motors in CNC machines, this calculator might come in
handy.

In the end, it was possible for our machine to move correctly.

Below one can see a homing procedure.

The machine code was calculated using the corresponding extension in Inkscape. The procedure
can be seen below. 10.jpg

20.jpg

30.jpg

This made it possible for the machine to move accordingly to the specified shape.

setting zero manually
gcode set WCS position
gcode get WCS/MCS? position
handle differend WCSs
set home offsets
get MCS position? get WCS position?
g91: relative modus
g90: absoluter modus
flattened the motor rods
labelled the motor plugs: "d" faces the driver

/**
 * Default Axis Steps Per Unit (linear=steps/mm, rotational=steps/deg)
 * Override with M92
 * X, Y, Z [, I [, J {, K...]]], E0 [, E1[, E2...]]
 */
#define DEFAULT_AXIS_STEPS_PER_UNIT { 102, 102, 400, 500 }

Generating a Toolpath Using Inkscape

Jakobs notes

https://blog.prusa3d.com/calculator_3416/
https://marlinfw.org/docs/gcode/G092.html
https://marlinfw.org/docs/gcode/M114.html
https://marlinfw.org/docs/gcode/G054-G059.html
https://marlinfw.org/docs/gcode/M206.html

generating gcode https://www.youtube.com/watch?v=nXENk0NM0m0
following errormeldung: enable dynamic offset (ctrl j)

problem: circle gcode is not executed properly. ncviewer shows a circle. but it is not drawn.

session with ferdi

add
capstan was loose. annoying
because of slip
we observed. at the right motor the
oberfläche wo man papier nicht mehr draufkleben muss

3m77 spray, kannste auf oberfläche sprühen und dann musste papier nicht mehr
draufkleben

trick: sprühflasche: spraydose benutzt: umdrehen und sprühen bis nur noch luft rauskommt. das
macht die nozzle sauber. loch freisprühen

where is the 0/0 of our machine?
move 0/0 to left upper corner

Below, some references are listed.

Urumbu
Urumbu, further work
Project Sampo, using Urumbu
OSAP, a web framework for talking with USB-driven hardware modules (e.g. motors),
showing everything you would make on pcbs onto the desktop for rapid prototyping.
However, this would be overkill for our project.
Urumbu_IO
UrumbubotXY 2.0

Open Questions / TODOs

References

Urumbu Drivers

https://github.com/SeanP2001/Urumbu_USB_Stepper_Motor
https://github.com/SeanP2001/Urumbu_USB_Stepper_Motor/tree/main?tab=readme-ov-file#further-work
https://gitlab.com/fab-lab-oulu/sampo
https://osap.tools/
https://gitlab.cba.mit.edu/quentinbolsee/urumbu_io
https://gitlab.cba.mit.edu/quentinbolsee/urumbotxy-2.0

Capstan drive
Laid up gantries with capstan drives
Another capstan mechanism

Cable carriers 3d printable
flexible XY-stage
Pen mount:

http://www.makelangelo.com/
https://wiki.opensourceecology.org/wiki/Ferdi

motor
cable carrier
GrabCAD

We have not been able to set up the servo motor for lifting the pen. Therefore, we could
only create drawings consisting of one continuous line. The pen-lifting automation could
be added.
As it can be seen in the video, we were not able to draw shapes perfectly. This could be
improved.
0 punkt unten links. weil der ist auch in inkscape unten links bei gcode tools da muss man
dann nichts mehr machen

dafür musste man nach homen und vor ausführen des gcodes nochmal den WCS null
auf unten links manuell setzen.
ggf script schreiben dafür

capstan führung anpassen: entweder rollen am teil breiter oder faden innerhalb der
extrusion entlangführen. dafür müssten passende v-wheels designt werden.
ein gehäuse bauen
besseren stifthalter

Capstan Drive

Other

Possible improvements

Revision #89
Created 17 April 2025 00:12:24 by Jakob
Updated 4 May 2025 09:55:38 by Jakob

https://gitlab.cba.mit.edu/quentinbolsee/urumbotxy-2.0
https://gitlab.cba.mit.edu/jakeread/lug-capstans
https://www.youtube.com/watch?v=MwIBTbumd1Q
https://fab.cba.mit.edu/classes/865.24/people/svavar/components/cable_carrier/#basic-design
https://gitlab.fabcloud.org/academany/fabacademy/2020/bootcamp/spicy/-/tree/master/Urumbu/flexible-XYstage
https://grabcad.com/library/nema-17-wantai-42byghw811-1
https://www.thingiverse.com/thing:2920060
https://grabcad.com

